

Version 1.2
June 15, 2015

Matrix42
ASQL Reference

Copyright

 - 2 -

Copyright © 2000 - 2015 Matrix42 AG

This documentation is protected by copyright laws. All Rights Reserved.

This documentation reflects the state of the software at the time of compilation of the
documentation. The software in this documentation is subject to changes which may cause
discrepancies between the documentation and the software it is referring to.

Apple und Mac OS X are registered trademarks of Apple Inc.
Citrix® software or Citrix® server are Trademarks and Registered Trademarks of Citrix Systems,
Inc. in the United States and other countries.
cygwin is copyrighted by Red Hat Inc. 1996-2003.
expat is copyrighted by Thai Open Source Software Center Ltd.
gSOAP is copyrighted by Robert A. van Engelen, Genivia, Inc. All rights reserved.
Iconv is copyrighted by 1999-2003 Free Software Foundation, Inc.
Iperf is copyrighted by the University of Illinois, except for the gnu_getopt.c, gnu_getopt_long.c,
gnu_getopt.h files, and inet_aton.c, which are under the GNU General Public License.
Libmspack (C) 2003-2004 by Stuart Caie <kyzer@4u.net>.
OpenSSL This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit.
PuTTY is copyrighted by Simon Tatham. Portions copyright Robert de Bath, Joris van Rantwijk,
Delian Delchev, Andreas Schultz, Jeroen Massar, Wez Furlong, Nicolas Barry, Justin Bradford, Ben
Harris, Malcolm Smith, Ahmad Khalifa, Markus Kuhn, and CORE SDI S.A.
RSA Data Security, Inc. MD5 Message-Digest Algorithm is copyrighted by RSA Data Security Inc.
Created 1991. All rights reserved.
rsync is an open source utility that provides fast incremental file transfer. rsync is freely available
under the GNU General Public License version 2.
runcontrol The Initial Developer of the Original Code is James Clark. Portions created by James
Clark are Copyright (c) 1998 James Clark. All rights reserved.
SNMP++ Copyright (c) 1996 Hewlett-Packard Company.
VMware, the VMware "boxes" logo and design, Virtual SMP, VMotion vSphere, vSphere
Hypervisor (ESXi), ESX, View, ThinApp, vCenter and vCloud are registered trademarks or
trademarks of VMware, Inc. in the United States and/or other jurisdictions.
Windows, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server
2008, Windows 7 and Windows Server 2008 R2 are registered trademarks of Microsoft
Corporation.

http://dast.nlanr.net/Projects/Iperf/ui_license.html
http://www.opensource.org/
http://rsync.samba.org/GPL.html

ASQL - Dokumentation

 - 3 -

Content
1 Introduction ... 4

2 Simple Queries for display expressions ... 5

3 Simple Queries for WHERE clauses .. 6

4 Queries across several Class Bases (Navigate relations) ... 8

4.1 T-Operator ... 8

5 Structures ... 10

5.1 Static Structures .. 10

5.2 Dynamic structures ... 11

6 Operators ... 14

7 Functions .. 15

7.1 The SUBQUERY function .. 15

7.2 The CASE function ... 15

7.3 Special functions.. 15

7.4 Standard SQL functions ... 16

ASQL - Dokumentation

 - 4 -

1 Introduction

This document provides an introduction to the Matrix42 query language ASQL and covers the most
important functions in everyday use.
Within the Matrix42 Service Store ASQL is used for defining:

Column Definitions of Object Searches

Calculated fields

Display expressions

Filter criteria

Structures

Quick Filter

Script Definition Parameter Expressions

Compliance Rules Conditions

We use ASQL expression in two different contexts. First, to define the attributes we want to query
from a class (the base class) and its related classes. Second to restrict the result of a query to a subset
of the instances (rows) of the base class. We call the first a display expression and the second a WHERE
clause. These two share in principle the same syntax with four differences:

A display expression contains, separated with commas, often more than one expression, a where
clause always only contains one expression.

The expressions in a display expression must define an alias if they are not direct attributes of the
base class. This alias is used to name the columns in the result and must be unique in the result.

The expressions in a display expression must have unique results for each instance (row) of the
base class. You cannot display the children of a 1-N relation, because there may be more than one
child.

A WHERE clause must always be of type Boolean expression

ASQL - Dokumentation

 - 5 -

2 Simple Queries for display expressions

An ASQL display expression serves to define the attributes we want to query from a class (the base
class) and its related classes. It is build up expressions containing:

Identifiers of data definitions (classes) or attributes (including relation attributes)

Functions

Constants

Operators

Example:
The simplest query for display expressions in ASQL is the query of attributes of an object type class
base.

The object type (configuration item) “Computer“ (SPSComputerType) has the class base
SPSComputerClassBase.
Valid ASQL queries for e.g. being used for column definitions could be:

ManagementType Value of computer attribute ManagementType

‘KA_’+Name Value of computer attribute Name leaded by the string ‘KA’

IsNull(IPAddress, ‘IP not available’) Value of computer attribute IPAddress if
not Null, else the string ‘IP not available’

Tip: If you are already familiar with normal SQL, in most cases you just can imagine to place these ASQL

queries between “SELECT” and “from SPSComputerClassBase” and you will get the according
SQL query.
At some places ASQL display expression can be used, e.g. the column definitions, the expression must
be leaded with a “=”.

“=” is needed for attributes stored in Relations

Or by using a function:

ASQL - Dokumentation

 - 6 -

3 Simple Queries for WHERE clauses

An ASQL WHERE clause serves to restrict the result of a query to a subset of the instances (rows) of the
according base class. It is build up expressions containing:

Identifiers of data definitions (classes) or attributes (including relation attributes)

Functions

Constants

Operators

Example:
The simplest query for WHERE clauses in ASQL is the query of attributes of an object type class base.

The object type (configuration item) “Computer“ (SPSComputerType) has the class base

SPSComputerClassBase.
Valid ASQL queries for e.g. being used for quick filters could be:

ManagementType=0 All Computers where ManagementType = 0 [manually]

Name like ‘KA%‘ All Computers where the name starts with KA

IPAddress IS NOT NULL All computers that have an IP address

Tip: If you are already familiar with normal SQL, in most cases you just can imagine to add “SELECT *
from SPSComputerClassBase WHERE” at the beginning of these ASQL queries and you will get
the according SQL query.

It can be used in static/dynamic structures, Quickfilters, Mailrecipient, (CoRu/WF-Designer), et cetera.

e.g.:
QuickFilter by state

ASQL - Dokumentation

 - 7 -

Static structure:

Recipient in Compliance Rule

ASQL - Dokumentation

 - 8 -

4 Queries across several Class Bases (Navigate relations)

By default ASQL queries are always used in a defined context of an object type (configuration item)
and one specific class base (data definition).
The simplest relation navigation mechanism is to access related classes defined in the data model as
relations from the base class is to use the relation name. So for navigating relations starting from the
base class you can use the simple “.”-syntax:
<RelationName>.<AttributeName>
Examples (context SPSComputerClassBase):

AssignedAccounts.AccountName like ‘XYZ’ All computers which are assigned to
the account XYZ

AssignedAccounts.Owner.ID IS NOT NULL All computers which have a person
assigned

But additionally an object type (configuration item) may have several class bases (data definitions)
with attributes.
Example:

The object type SPSComputerType contains the following class bases:

SPSComputerClassBase Class base tor computers

SPSAssetClassBase Class base tor assets

SPSlnventoryClassBase Class base for inventory data

To access classes that are declared in the according object type but are not the base class in context
the T-Operator is used (see the following chapter for details).
In some special cases, like e.g. on defining Compliance Rule conditions, there is no specific class base in
context, but just an object type. In these cases, you can navigate to all contained classes in the type in
context using the expression:
Related<ClassName>.<AttributeName>
Examples (context SPSComputerType):

RelatedSPSAssetClassBase.lnventoryNumber Inventory Number of the computer

RelatedCommonClassBase.Location.Name Location of the computer

RelatedComputerClassBase.ManagementType=0 All computers where
ManagementType = 0

4.1 T-Operator

You can reach attributes as well as relations with the T-Operator.
Syntax:
T(<ClassName>).<AttributeName>
T(<ClassName>).<RelationName>.<AttributeName>
Examples:

T(SPSAssetClassBase).lnventoryNumber lnventory number of a computer

T(SPSCommonClassBase).Location.Name Location name of a computer

ASQL - Dokumentation

 - 9 -

As relations only contain the ID of the other target object, you can continue from there to the desired
target attribute.

In the above examples, lnventoryNumber is only an attribute of the asset class base and the

assigned Location is the name of the relation from the common class base to the location class
base.
Relations only store the ID. In the case of the principal user relation, the asset class base contains the
ID of the user class base.
The two classes [asset & user] are fully connected and by using the relation name, all attributes of the
related class can be reached.
You can either simply define the target attribute you want to display, or modify the display name by an
expression.
Example:
Display of the first name of the main user:
T(SPSAssetClassBase).AssignedUser.FirstName

Create a display expression:
T(SPSAssetClassBase).AssignedUser[LastName + ISNULL(‘, ’+ FirstName,’’)]

If you do not define a target attribute, the system will show by default the display expression defined
in the target class.

Example 2:
It´s also possible to display attributes across Datadefinitions with these queries in Display-Layouts.

ASQL - Dokumentation

 - 10 -

5 Structures

Structures can use ASQL-Queries for Pre-filtering Data.

5.1 Static Structures

Static Structures can used very similar to the Quick Filters.

For Example you can simply filter by state

or UsedIntype.

ASQL - Dokumentation

 - 11 -

Combination of State and Pickup-Values,

more complex queries

And a combination of these.

5.2 Dynamic structures

Naming:

By default the structure can use attributes from specified class base (data definition) for naming
structure-folders. It is not allowed to use relation to other Cis for naming folders.

You can build flat or hieratic structures.

ASQL - Dokumentation

 - 12 -

The names of the structure-folders have to be in the choosen data definition.

Parent folder can be defined in other DDs.

ASQL Filter Expression have to be the ID of the attributes used for the structure like the attribute ID of
the choosen data definition containing the Parent relation.

e.a. SPSCommonClassBase.OU

Flat structures did not have a Parent relation

ASQL - Dokumentation

 - 13 -

Additionally you can use a where-clause with ASQL-queries.

ASQL - Dokumentation

 - 14 -

6 Operators

Arithmetic operators

o +, -,*,/

Binary operators

o |, &, ^

Compare operators

o =, <=, =<, =>, >=, <, >, <>, LIKE, IS [NOT] NULL

Logical operators

o AND, OR, NOT

Subquery operators

o IN, EXISTS

ASQL - Dokumentation

 - 15 -

7 Functions

7.1 The SUBQUERY function

The SUBQUERY function is used to query related classes or to limit the result set.
Syntax:
SUBQUERY (<BaseClass> AS <Alias>, <TargetAttribute>, <Filter>)
In which:

 <BaseClass> BaseClass for the SubQuery

 <Alias> The alias will be used for the <TargetAttribute> and <Filter>

 <TargetAttribute> Defines the result set for the Subquery

 <Filter> Limits the result set

Example:

We want a column in the list view for persons (SPSUserType with SPSUserClassBase) to show
the number of assets they have assigned.
=SUBQUERY(SPSAssetClassBase AS ACB, Count(all, ACB.*),

ACB.AssignedUser.ID=base.ID)

7.2 The CASE function

The CASE function allows you to discriminate between various cases depending on the values
displayed.
Syntax:
CASE WHEN <attribute> = <value> THEN ‘Condition1 met‘ ... ELSE ‘No condition met‘ END
In our example we will use the SQL function DateDiff(), which calculates the time difference between

an attribute and the current date (getdate()) in the context of SPSContractItemClassBase.
=CASE WHEN DateDiff(month, getdate(), ValidUntil) < 0 THEN ‘expired’ ELSE

‘active’ END

7.3 Special functions

CurrentUserID() CurrentUserID () Returns the ID column of the SPSUserBaseClass for the current
logged in user in Console.

ASQL - Dokumentation

 - 16 -

InteractiveUserID() InteractiveUserID () Returns the ID column of the SPSUserBaseClass for the
current logged in user in portal.

Recursive() RECURSIVE (relation_identifier) Provides all object instances of an hierarchical tree
structures that are part of a parent or child branch. Can be used only for the following classes (data
definitions): SPSOrgUnitClassBase, SPSLocationClassBase, SPSScCategoryClassBase,
SPSArticleCategoryClassBase. Examples:

o Recursive(OUFor).T(SPSOrgUnitClassBase).Name=’XYZ' Context:
SPSOrgUnitClassBase. Provides all Organization Units that are part of the parent branch of the
Organization Unit XYZ.

o T(SPSCommonClassBase).Recursive(OU).

T(SPSOrgUnitClassBase).Name=’XYZ' Context: SPSOrgUnitClassBase. Provides all
Organization Units that are part of the child branch of the Organization Unit XYZ.

o Recursive(Parent).Name='Service Desk' Context: SPSScCategoryClassBase. Provides
all Categories that are part of the parent branch of the Category Service Desk.

7.4 Standard SQL functions

ASQL supports the usage of all important functions provided natively by MS SQL Server’s Transact-SQL
syntax. Below you will find the list of supported functions. Please refer to
http://msdn.microsoft.com/de-de/library/bb510741.aspx for detailed information about the single
functions.

 Count() COUNT ({ [[ALL | DISTINCT ,] expression] | * }) Returns the number of items in a
group. COUNT always returns an int data type value. This function can be used only within the
SUBQUERY function.

 Sum() SUM (expression) Returns the sum of all the values in the expression. SUM can be used
with numeric columns only. Null values are ignored. This function can be used only within the
SUBQUERY function.

ASQL - Dokumentation

 - 17 -

 IsNull() ISNULL (check_expression , replacement_value) Replaces NULL with the specified

replacement value.

 Coalesce() COALESCE (expression [,...n]) Returns the first nonnull expression among its
arguments.

 Reverse() REVERSE (string_expression) Returns the reverse of a string value.

 Left() LEFT (character_expression , integer_expression) Returns the left part of a character
string with the specified number of characters.

 Right() RIGHT (character_expression ,integer_expression) Returns the right part of a
character string with the specified number of characters.

 LTrim() LTRIM (character_expression) Returns a character expression after it removes leading
blanks.

 RTrim() RTRIM (character_expression) Returns a character string after truncating all trailing
blanks.

 Len() LEN (string_expression) Returns the number of characters of the specified string
expression, excluding trailing blanks.

 SubString() SUBSTRING (value_expression ,start_expression ,length_expression) Returns
part of a character, binary, text, or image expression.

 Replace() REPLACE (string_expression,string_pattern,string_replacement) Replaces all
occurrences of a specified string value with another string value.

 PatIndex() PATINDEX ('%pattern%' , expression) Returns the starting position of the first
occurrence of a pattern in a specified expression, or zeros if the pattern is not found, on all
valid text and character data types.

 GetDate() GETDATE () Returns the current database system timestamp as a datetime value
without the database time zone offset. This value is derived from the operating system of the
computer on which the instance of SQL Server is running.

 DateAdd() DATEADD (datepart , number , date) Returns a specified date with the specified
number interval (signed integer) added to a specified datepart of that date.

 DateDiff() DATEDIFF (datepart ,startdate ,enddate) Returns the count (signed integer) of the
specified datepart boundaries crossed between the specified startdate and enddate.

 DatePart() DATEPART (datepart , date) Returns an integer that represents the specified
datepart of the specified date.

 NewID() NEWID () Creates a unique value of type uniqueidentifier.

 Cast() CAST (expression, data_type) Explicitly converts an expression of one data type to
another.

 Min() Min find the minimum Value in a equal to SQL Min-Function
 Max() Max find the minimum Value in a equal to SQL Max-Function

Matrix42 AG

ASQL - Dokumentation

 - 18 -

Amalienbadstraße 41 / Bau 54
76227 Karlsruhe
Germany
+49 (721) 914 32 - 300
Internet E-Mail: info@matrix42.de
Website: http://www.matrix42.de
Matrix42 Service Store, Version: 5.30

